2048BT
导航切换
首页
热门番号
热门女优
今日热门
一周热门
最新更新
搜索磁力
BT种子名称
[FreeCourseSite.com] Udemy - A Complete Guide on TensorFlow 2.0 using Keras API
分享给好友
找到本站最新地址的两种方法: 1、记住地址发布页
2048bt.cc
、
2048bt.cyou
、
bt搜索.xyz
、
bt搜索.cc
2、发送“地址”到2048bt@gmail.com
BT种子基本信息
种子哈希:
d6603b9583143e0256637fe13916852aadae4126
文档大小:
5.5 GB
文档个数:
275
个文档
下载次数:
1029
次
下载速度:
极快
收录时间:
2021-06-09
最近下载:
2024-10-05
DMCA/屏蔽:
DMCA/屏蔽
下载磁力链接
magnet:?xt=urn:btih:D6603B9583143E0256637FE13916852AADAE4126
复制磁力链接到utorrent、Bitcomet、迅雷、115、百度网盘、
PIKPAK
等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
含羞草
51品茶
91视频
逼哩逼哩
欲漫涩
草榴社区
抖阴破解版
成人快手
暗网禁区
缅北禁地
TikTok成人版
暗网解密
文档列表
16. Annex 2 - Convolutional Neural Networks Theory/7. Step 4 - Full Connection.mp4
203.6 MB
17. Annex 3 - Recurrent Neural Networks Theory/5. LSTM Practical Intuition.mp4
196.5 MB
1. Introduction/1. Welcome to the TensorFlow 2.0 course! Discover its structure and the TF toolkit..mp4
153.4 MB
16. Annex 2 - Convolutional Neural Networks Theory/5. Step 2 - Max Pooling.mp4
147.0 MB
7. Deep Reinforcement Learning Theory/9. Action Selection Policies.mp4
143.5 MB
17. Annex 3 - Recurrent Neural Networks Theory/4. LSTMs.mp4
143.1 MB
17. Annex 3 - Recurrent Neural Networks Theory/2. What are Recurrent Neural Networks.mp4
126.8 MB
16. Annex 2 - Convolutional Neural Networks Theory/9. Softmax & Cross-Entropy.mp4
123.6 MB
2. TensorFlow 2.0 Basics/1. From TensorFlow 1.x to TensorFlow 2.0.mp4
120.4 MB
7. Deep Reinforcement Learning Theory/8. Experience Replay.mp4
120.3 MB
15. Annex 1 - Artificial Neural Networks Theory/5. How do Neural Networks Learn.mp4
117.6 MB
17. Annex 3 - Recurrent Neural Networks Theory/3. Vanishing Gradient.mp4
116.4 MB
16. Annex 2 - Convolutional Neural Networks Theory/2. What are Convolutional Neural Networks.mp4
113.1 MB
7. Deep Reinforcement Learning Theory/6. Deep Q-Learning Intuition - Step 1.mp4
104.8 MB
15. Annex 1 - Artificial Neural Networks Theory/2. The Neuron.mp4
103.5 MB
16. Annex 2 - Convolutional Neural Networks Theory/3. Step 1 - Convolution.mp4
102.6 MB
7. Deep Reinforcement Learning Theory/5. Temporal Difference.mp4
101.8 MB
7. Deep Reinforcement Learning Theory/2. The Bellman Equation.mp4
99.7 MB
7. Deep Reinforcement Learning Theory/3. Markov Decision Process (MDP).mp4
98.9 MB
4. Convolutional Neural Networks/2. Building the Convolutional Neural Network.mp4
92.5 MB
15. Annex 1 - Artificial Neural Networks Theory/4. How do Neural Networks Work.mp4
85.8 MB
7. Deep Reinforcement Learning Theory/4. Q-Learning Intuition.mp4
82.9 MB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/5. Dataset preprocessing pipeline.mp4
77.6 MB
2. TensorFlow 2.0 Basics/2. Constants, Variables, Tensors.mp4
74.8 MB
7. Deep Reinforcement Learning Theory/1. What is Reinforcement Learning.mp4
71.9 MB
15. Annex 1 - Artificial Neural Networks Theory/7. Stochastic Gradient Descent.mp4
70.5 MB
3. Artificial Neural Networks/2. Data Preprocessing.mp4
64.8 MB
15. Annex 1 - Artificial Neural Networks Theory/6. Gradient Descent.mp4
63.5 MB
3. Artificial Neural Networks/3. Building the Artificial Neural Network.mp4
63.4 MB
3. Artificial Neural Networks/1. Project Setup.mp4
62.1 MB
4. Convolutional Neural Networks/3. Training and Evaluating the Convolutional Neural Network.mp4
61.1 MB
8. Deep Reinforcement Learning for Stock Market trading/12. Training loop - Step 2.mp4
56.8 MB
16. Annex 2 - Convolutional Neural Networks Theory/4. Step 1 Bis - ReLU Layer.mp4
56.0 MB
11. Fashion API with Flask and TensorFlow 2.0/5. Creating classify function.mp4
55.7 MB
6. Transfer Learning and Fine Tuning/2. Project Setup.mp4
51.8 MB
2. TensorFlow 2.0 Basics/3. Operations with Tensors.mp4
51.6 MB
5. Recurrent Neural Networks/3. Training and Evaluating the Recurrent Neural Network.mp4
51.3 MB
3. Artificial Neural Networks/4. Training the Artificial Neural Network.mp4
50.9 MB
4. Convolutional Neural Networks/1. Project Setup & Data Preprocessing.mp4
49.7 MB
6. Transfer Learning and Fine Tuning/1. What is Transfer Learning.mp4
48.8 MB
5. Recurrent Neural Networks/1. Project Setup & Data Preprocessing.mp4
48.7 MB
15. Annex 1 - Artificial Neural Networks Theory/3. The Activation Function.mp4
47.5 MB
15. Annex 1 - Artificial Neural Networks Theory/8. Backpropagation.mp4
45.2 MB
7. Deep Reinforcement Learning Theory/7. Deep Q-Learning Intuition - Step 2.mp4
45.2 MB
2. TensorFlow 2.0 Basics/4. Strings.mp4
42.2 MB
5. Recurrent Neural Networks/2. Building the Recurrent Neural Network.mp4
42.0 MB
8. Deep Reinforcement Learning for Stock Market trading/7. Dataset Loader function.mp4
40.8 MB
11. Fashion API with Flask and TensorFlow 2.0/1. Project Setup.mp4
38.5 MB
11. Fashion API with Flask and TensorFlow 2.0/7. Sending API requests over internet to the model.mp4
36.7 MB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/2. Initial dataset preprocessing.mp4
36.7 MB
8. Deep Reinforcement Learning for Stock Market trading/6. AI Trader - Step 5.mp4
34.8 MB
6. Transfer Learning and Fine Tuning/9. Image Data Generators.mp4
34.2 MB
8. Deep Reinforcement Learning for Stock Market trading/8. State creator function.mp4
33.9 MB
6. Transfer Learning and Fine Tuning/3. Dataset preprocessing.mp4
33.4 MB
3. Artificial Neural Networks/5. Evaluating the Artificial Neural Network.mp4
33.0 MB
16. Annex 2 - Convolutional Neural Networks Theory/8. Summary.mp4
31.8 MB
13. TensorFlow Lite Prepare a model for a mobile device/3. Dataset preprocessing.mp4
30.2 MB
14. Distributed Training with TensorFlow 2.0/7. Final evaluation - Speed test normal model vs distributed model.mp4
29.8 MB
8. Deep Reinforcement Learning for Stock Market trading/11. Training loop - Step 1.mp4
29.5 MB
12. Image Classification API with TensorFlow Serving/7. Serving the TensorFlow 2.0 Model.mp4
29.3 MB
11. Fashion API with Flask and TensorFlow 2.0/6. Starting the Flask application.mp4
29.0 MB
12. Image Classification API with TensorFlow Serving/9. Sending the first POST request to the model.mp4
28.7 MB
8. Deep Reinforcement Learning for Stock Market trading/2. AI Trader - Step 1.mp4
28.5 MB
14. Distributed Training with TensorFlow 2.0/3. Dataset preprocessing.mp4
26.8 MB
12. Image Classification API with TensorFlow Serving/3. Project setup.mp4
26.8 MB
12. Image Classification API with TensorFlow Serving/6. Saving the model for production.mp4
26.7 MB
9. Data Validation with TensorFlow Data Validation (TFDV)/2. Loading the pollution dataset.mp4
26.0 MB
6. Transfer Learning and Fine Tuning/12. Fine Tuning model definition.mp4
25.8 MB
12. Image Classification API with TensorFlow Serving/1. What is the TensorFlow Serving.mp4
25.6 MB
9. Data Validation with TensorFlow Data Validation (TFDV)/3. Creating dataset Schema.mp4
25.3 MB
9. Data Validation with TensorFlow Data Validation (TFDV)/5. Anomaly detection with TensorFlow Data Validation.mp4
25.1 MB
12. Image Classification API with TensorFlow Serving/4. Dataset preprocessing.mp4
24.9 MB
12. Image Classification API with TensorFlow Serving/8. Creating a JSON object.mp4
24.7 MB
12. Image Classification API with TensorFlow Serving/5. Defining, training and evaluating a model.mp4
24.5 MB
9. Data Validation with TensorFlow Data Validation (TFDV)/1. Project Setup.mp4
23.4 MB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/4. Preprocessing function.mp4
22.1 MB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/3. Dataset metadata.mp4
22.0 MB
11. Fashion API with Flask and TensorFlow 2.0/3. Loading a pre-trained model.mp4
21.5 MB
17. Annex 3 - Recurrent Neural Networks Theory/6. LSTM Variations.mp4
21.1 MB
9. Data Validation with TensorFlow Data Validation (TFDV)/6. Preparing Schema for production.mp4
20.7 MB
6. Transfer Learning and Fine Tuning/6. Adding a custom head to the pre-trained model.mp4
20.7 MB
12. Image Classification API with TensorFlow Serving/2. TensorFlow Serving architecture.mp4
20.5 MB
6. Transfer Learning and Fine Tuning/4. Loading the MobileNet V2 model.mp4
18.7 MB
6. Transfer Learning and Fine Tuning/10. Transfer Learning.mp4
17.6 MB
8. Deep Reinforcement Learning for Stock Market trading/5. AI Trader - Step 4.mp4
16.7 MB
8. Deep Reinforcement Learning for Stock Market trading/4. AI Trader - Step 3.mp4
16.6 MB
16. Annex 2 - Convolutional Neural Networks Theory/1. Plan of Attack.mp4
16.6 MB
13. TensorFlow Lite Prepare a model for a mobile device/5. Training, evaluating the model.mp4
15.9 MB
13. TensorFlow Lite Prepare a model for a mobile device/4. Building a model.mp4
15.6 MB
14. Distributed Training with TensorFlow 2.0/4. Defining a non-distributed model (normal CNN model).mp4
14.7 MB
13. TensorFlow Lite Prepare a model for a mobile device/1. What is the TensorFlow Lite.mp4
14.6 MB
6. Transfer Learning and Fine Tuning/7. Defining the transfer learning model.mp4
13.8 MB
6. Transfer Learning and Fine Tuning/8. Compiling the Transfer Learning model.mp4
13.2 MB
14. Distributed Training with TensorFlow 2.0/6. Defining a distributed model.mp4
13.1 MB
11. Fashion API with Flask and TensorFlow 2.0/4. Defining the Flask application.mp4
13.0 MB
11. Fashion API with Flask and TensorFlow 2.0/2. Importing project dependencies.mp4
12.5 MB
8. Deep Reinforcement Learning for Stock Market trading/3. AI Trader - Step 2.mp4
12.5 MB
8. Deep Reinforcement Learning for Stock Market trading/1. Project Setup.mp4
12.5 MB
8. Deep Reinforcement Learning for Stock Market trading/10. Defining the model.mp4
12.4 MB
15. Annex 1 - Artificial Neural Networks Theory/1. Plan of Attack.mp4
12.4 MB
14. Distributed Training with TensorFlow 2.0/1. What is the Distributed Training.mp4
11.6 MB
17. Annex 3 - Recurrent Neural Networks Theory/1. Plan of Attack.mp4
11.0 MB
6. Transfer Learning and Fine Tuning/14. Fine Tuning.mp4
10.7 MB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/1. Project Setup.mp4
10.5 MB
8. Deep Reinforcement Learning for Stock Market trading/9. Loading the dataset.mp4
10.5 MB
12. Image Classification API with TensorFlow Serving/10. Sending the POST request to a specific model.mp4
10.1 MB
13. TensorFlow Lite Prepare a model for a mobile device/6. Saving the model.mp4
9.9 MB
6. Transfer Learning and Fine Tuning/11. Evaluating Transfer Learning results.mp4
9.8 MB
14. Distributed Training with TensorFlow 2.0/2. Project Setup.mp4
9.5 MB
6. Transfer Learning and Fine Tuning/15. Evaluating Fine Tuning results.mp4
9.4 MB
13. TensorFlow Lite Prepare a model for a mobile device/9. Saving the converted model.mp4
9.1 MB
9. Data Validation with TensorFlow Data Validation (TFDV)/7. Saving the Schema.mp4
8.5 MB
13. TensorFlow Lite Prepare a model for a mobile device/2. Project setup.mp4
8.4 MB
16. Annex 2 - Convolutional Neural Networks Theory/6. Step 3 - Flattening.mp4
8.3 MB
14. Distributed Training with TensorFlow 2.0/5. Setting up a distributed strategy.mp4
7.8 MB
6. Transfer Learning and Fine Tuning/13. Compiling the Fine Tuning model.mp4
6.7 MB
13. TensorFlow Lite Prepare a model for a mobile device/7. TensorFlow Lite Converter.mp4
6.6 MB
6. Transfer Learning and Fine Tuning/5. Freezing the pre-trained model.mp4
6.4 MB
13. TensorFlow Lite Prepare a model for a mobile device/8. Converting the model to a TensorFlow Lite model.mp4
5.2 MB
9. Data Validation with TensorFlow Data Validation (TFDV)/4. Computing test set statistics.mp4
2.6 MB
11. Fashion API with Flask and TensorFlow 2.0/1.1 Flask API.zip
381.3 kB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/1.2 pollution_small.csv
74.5 kB
9. Data Validation with TensorFlow Data Validation (TFDV)/1.2 pollution_small.csv
74.5 kB
7. Deep Reinforcement Learning Theory/2. The Bellman Equation.srt
32.0 kB
7. Deep Reinforcement Learning Theory/5. Temporal Difference.srt
29.5 kB
16. Annex 2 - Convolutional Neural Networks Theory/7. Step 4 - Full Connection.srt
29.2 kB
17. Annex 3 - Recurrent Neural Networks Theory/4. LSTMs.srt
28.8 kB
7. Deep Reinforcement Learning Theory/3. Markov Decision Process (MDP).srt
27.7 kB
1. Introduction/1. Welcome to the TensorFlow 2.0 course! Discover its structure and the TF toolkit..srt
27.0 kB
16. Annex 2 - Convolutional Neural Networks Theory/9. Softmax & Cross-Entropy.srt
26.3 kB
15. Annex 1 - Artificial Neural Networks Theory/2. The Neuron.srt
25.6 kB
17. Annex 3 - Recurrent Neural Networks Theory/2. What are Recurrent Neural Networks.srt
24.9 kB
7. Deep Reinforcement Learning Theory/9. Action Selection Policies.srt
24.6 kB
7. Deep Reinforcement Learning Theory/8. Experience Replay.srt
24.4 kB
16. Annex 2 - Convolutional Neural Networks Theory/3. Step 1 - Convolution.srt
23.9 kB
7. Deep Reinforcement Learning Theory/6. Deep Q-Learning Intuition - Step 1.srt
23.0 kB
16. Annex 2 - Convolutional Neural Networks Theory/2. What are Convolutional Neural Networks.srt
22.6 kB
7. Deep Reinforcement Learning Theory/4. Q-Learning Intuition.srt
22.2 kB
17. Annex 3 - Recurrent Neural Networks Theory/5. LSTM Practical Intuition.srt
21.5 kB
16. Annex 2 - Convolutional Neural Networks Theory/5. Step 2 - Max Pooling.srt
21.5 kB
17. Annex 3 - Recurrent Neural Networks Theory/3. Vanishing Gradient.srt
21.0 kB
4. Convolutional Neural Networks/2. Building the Convolutional Neural Network.srt
20.7 kB
15. Annex 1 - Artificial Neural Networks Theory/5. How do Neural Networks Learn.srt
19.6 kB
15. Annex 1 - Artificial Neural Networks Theory/4. How do Neural Networks Work.srt
19.5 kB
7. Deep Reinforcement Learning Theory/1. What is Reinforcement Learning.srt
18.7 kB
2. TensorFlow 2.0 Basics/1. From TensorFlow 1.x to TensorFlow 2.0.srt
16.9 kB
3. Artificial Neural Networks/3. Building the Artificial Neural Network.srt
15.6 kB
15. Annex 1 - Artificial Neural Networks Theory/6. Gradient Descent.srt
14.4 kB
2. TensorFlow 2.0 Basics/2. Constants, Variables, Tensors.srt
13.6 kB
15. Annex 1 - Artificial Neural Networks Theory/7. Stochastic Gradient Descent.srt
12.6 kB
15. Annex 1 - Artificial Neural Networks Theory/3. The Activation Function.srt
12.3 kB
4. Convolutional Neural Networks/1. Project Setup & Data Preprocessing.srt
11.6 kB
4. Convolutional Neural Networks/3. Training and Evaluating the Convolutional Neural Network.srt
11.3 kB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/5. Dataset preprocessing pipeline.srt
10.9 kB
3. Artificial Neural Networks/2. Data Preprocessing.srt
10.8 kB
3. Artificial Neural Networks/4. Training the Artificial Neural Network.srt
10.6 kB
5. Recurrent Neural Networks/3. Training and Evaluating the Recurrent Neural Network.srt
10.6 kB
5. Recurrent Neural Networks/1. Project Setup & Data Preprocessing.srt
10.4 kB
7. Deep Reinforcement Learning Theory/7. Deep Q-Learning Intuition - Step 2.srt
10.0 kB
16. Annex 2 - Convolutional Neural Networks Theory/4. Step 1 Bis - ReLU Layer.srt
9.9 kB
8. Deep Reinforcement Learning for Stock Market trading/12. Training loop - Step 2.srt
9.9 kB
8. Deep Reinforcement Learning for Stock Market trading/8. State creator function.srt
9.9 kB
5. Recurrent Neural Networks/2. Building the Recurrent Neural Network.srt
9.4 kB
2. TensorFlow 2.0 Basics/4. Strings.srt
9.0 kB
3. Artificial Neural Networks/1. Project Setup.srt
8.9 kB
2. TensorFlow 2.0 Basics/3. Operations with Tensors.srt
8.6 kB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/2. Initial dataset preprocessing.srt
8.6 kB
8. Deep Reinforcement Learning for Stock Market trading/7. Dataset Loader function.srt
8.2 kB
8. Deep Reinforcement Learning for Stock Market trading/2. AI Trader - Step 1.srt
7.9 kB
11. Fashion API with Flask and TensorFlow 2.0/1. Project Setup.srt
7.9 kB
12. Image Classification API with TensorFlow Serving/1. What is the TensorFlow Serving.srt
7.7 kB
15. Annex 1 - Artificial Neural Networks Theory/8. Backpropagation.srt
7.5 kB
12. Image Classification API with TensorFlow Serving/9. Sending the first POST request to the model.srt
7.3 kB
8. Deep Reinforcement Learning for Stock Market trading/11. Training loop - Step 1.srt
7.1 kB
3. Artificial Neural Networks/5. Evaluating the Artificial Neural Network.srt
7.0 kB
9. Data Validation with TensorFlow Data Validation (TFDV)/3. Creating dataset Schema.srt
6.5 kB
6. Transfer Learning and Fine Tuning/3. Dataset preprocessing.srt
6.5 kB
6. Transfer Learning and Fine Tuning/9. Image Data Generators.srt
6.5 kB
8. Deep Reinforcement Learning for Stock Market trading/6. AI Trader - Step 5.srt
6.3 kB
6. Transfer Learning and Fine Tuning/1. What is Transfer Learning.srt
6.2 kB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/4. Preprocessing function.srt
6.2 kB
16. Annex 2 - Convolutional Neural Networks Theory/8. Summary.srt
6.2 kB
11. Fashion API with Flask and TensorFlow 2.0/5. Creating classify function.srt
5.7 kB
14. Distributed Training with TensorFlow 2.0/3. Dataset preprocessing.srt
5.6 kB
9. Data Validation with TensorFlow Data Validation (TFDV)/5. Anomaly detection with TensorFlow Data Validation.srt
5.6 kB
16. Annex 2 - Convolutional Neural Networks Theory/1. Plan of Attack.srt
5.5 kB
12. Image Classification API with TensorFlow Serving/6. Saving the model for production.srt
5.4 kB
13. TensorFlow Lite Prepare a model for a mobile device/1. What is the TensorFlow Lite.srt
5.3 kB
12. Image Classification API with TensorFlow Serving/4. Dataset preprocessing.srt
5.2 kB
9. Data Validation with TensorFlow Data Validation (TFDV)/2. Loading the pollution dataset.srt
5.1 kB
12. Image Classification API with TensorFlow Serving/7. Serving the TensorFlow 2.0 Model.srt
5.0 kB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/3. Dataset metadata.srt
4.9 kB
9. Data Validation with TensorFlow Data Validation (TFDV)/1. Project Setup.srt
4.9 kB
12. Image Classification API with TensorFlow Serving/3. Project setup.srt
4.7 kB
17. Annex 3 - Recurrent Neural Networks Theory/6. LSTM Variations.srt
4.7 kB
6. Transfer Learning and Fine Tuning/12. Fine Tuning model definition.srt
4.7 kB
6. Transfer Learning and Fine Tuning/2. Project Setup.srt
4.7 kB
12. Image Classification API with TensorFlow Serving/2. TensorFlow Serving architecture.srt
4.6 kB
11. Fashion API with Flask and TensorFlow 2.0/7. Sending API requests over internet to the model.srt
4.6 kB
14. Distributed Training with TensorFlow 2.0/7. Final evaluation - Speed test normal model vs distributed model.srt
4.5 kB
14. Distributed Training with TensorFlow 2.0/1. What is the Distributed Training.srt
4.4 kB
9. Data Validation with TensorFlow Data Validation (TFDV)/6. Preparing Schema for production.srt
4.4 kB
13. TensorFlow Lite Prepare a model for a mobile device/3. Dataset preprocessing.srt
4.3 kB
6. Transfer Learning and Fine Tuning/6. Adding a custom head to the pre-trained model.srt
4.3 kB
15. Annex 1 - Artificial Neural Networks Theory/1. Plan of Attack.srt
4.1 kB
11. Fashion API with Flask and TensorFlow 2.0/3. Loading a pre-trained model.srt
4.0 kB
6. Transfer Learning and Fine Tuning/4. Loading the MobileNet V2 model.srt
3.9 kB
14. Distributed Training with TensorFlow 2.0/4. Defining a non-distributed model (normal CNN model).srt
3.8 kB
17. Annex 3 - Recurrent Neural Networks Theory/1. Plan of Attack.srt
3.6 kB
6. Transfer Learning and Fine Tuning/8. Compiling the Transfer Learning model.srt
3.6 kB
12. Image Classification API with TensorFlow Serving/8. Creating a JSON object.srt
3.6 kB
8. Deep Reinforcement Learning for Stock Market trading/5. AI Trader - Step 4.srt
3.5 kB
12. Image Classification API with TensorFlow Serving/5. Defining, training and evaluating a model.srt
3.5 kB
13. TensorFlow Lite Prepare a model for a mobile device/4. Building a model.srt
3.3 kB
8. Deep Reinforcement Learning for Stock Market trading/10. Defining the model.srt
3.3 kB
6. Transfer Learning and Fine Tuning/10. Transfer Learning.srt
3.2 kB
8. Deep Reinforcement Learning for Stock Market trading/4. AI Trader - Step 3.srt
3.0 kB
8. Deep Reinforcement Learning for Stock Market trading/1. Project Setup.srt
3.0 kB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/1. Project Setup.srt
2.8 kB
11. Fashion API with Flask and TensorFlow 2.0/6. Starting the Flask application.srt
2.8 kB
16. Annex 2 - Convolutional Neural Networks Theory/6. Step 3 - Flattening.srt
2.7 kB
6. Transfer Learning and Fine Tuning/14. Fine Tuning.srt
2.7 kB
13. TensorFlow Lite Prepare a model for a mobile device/2. Project setup.srt
2.6 kB
11. Fashion API with Flask and TensorFlow 2.0/2. Importing project dependencies.srt
2.6 kB
8. Deep Reinforcement Learning for Stock Market trading/3. AI Trader - Step 2.srt
2.6 kB
13. TensorFlow Lite Prepare a model for a mobile device/5. Training, evaluating the model.srt
2.5 kB
12. Image Classification API with TensorFlow Serving/10. Sending the POST request to a specific model.srt
2.5 kB
6. Transfer Learning and Fine Tuning/7. Defining the transfer learning model.srt
2.4 kB
14. Distributed Training with TensorFlow 2.0/6. Defining a distributed model.srt
2.4 kB
18. Bonus Lectures/3. FREE LEARNING RESOURCES FOR YOU.html
2.4 kB
14. Distributed Training with TensorFlow 2.0/5. Setting up a distributed strategy.srt
2.3 kB
13. TensorFlow Lite Prepare a model for a mobile device/10. What's next.html
2.2 kB
13. TensorFlow Lite Prepare a model for a mobile device/6. Saving the model.srt
2.2 kB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/6. What's next.html
2.1 kB
9. Data Validation with TensorFlow Data Validation (TFDV)/8. What's next.html
2.0 kB
14. Distributed Training with TensorFlow 2.0/2. Project Setup.srt
2.0 kB
13. TensorFlow Lite Prepare a model for a mobile device/9. Saving the converted model.srt
2.0 kB
6. Transfer Learning and Fine Tuning/15. Evaluating Fine Tuning results.srt
1.9 kB
9. Data Validation with TensorFlow Data Validation (TFDV)/7. Saving the Schema.srt
1.9 kB
8. Deep Reinforcement Learning for Stock Market trading/9. Loading the dataset.srt
1.9 kB
13. TensorFlow Lite Prepare a model for a mobile device/7. TensorFlow Lite Converter.srt
1.8 kB
11. Fashion API with Flask and TensorFlow 2.0/4. Defining the Flask application.srt
1.8 kB
6. Transfer Learning and Fine Tuning/5. Freezing the pre-trained model.srt
1.8 kB
6. Transfer Learning and Fine Tuning/11. Evaluating Transfer Learning results.srt
1.7 kB
6. Transfer Learning and Fine Tuning/13. Compiling the Fine Tuning model.srt
1.5 kB
13. TensorFlow Lite Prepare a model for a mobile device/8. Converting the model to a TensorFlow Lite model.srt
1.5 kB
1. Introduction/4. BONUS Learning Path.html
1.4 kB
18. Bonus Lectures/2. YOUR SPECIAL BONUS.html
1.2 kB
9. Data Validation with TensorFlow Data Validation (TFDV)/4. Computing test set statistics.srt
840 Bytes
18. Bonus Lectures/1. SPECIAL COVID-19 BONUS.html
722 Bytes
1. Introduction/3. BONUS 10 advantages of TensorFlow.html
613 Bytes
4. Convolutional Neural Networks/6. HOMEWORK SOLUTION Convolutional Neural Networks.html
573 Bytes
4. Convolutional Neural Networks/5. HOMEWORK Convolutional Neural Networks.html
500 Bytes
3. Artificial Neural Networks/7. HOMEWORK Artificial Neural Networks.html
493 Bytes
1. Introduction/2. Course Curriculum & Colab Toolkit.html
464 Bytes
3. Artificial Neural Networks/8. HOMEWORK SOLUTION Artificial Neural Networks.html
421 Bytes
10. Dataset Preprocessing with TensorFlow Transform (TFT)/1.1 Google Colab TFT.html
134 Bytes
12. Image Classification API with TensorFlow Serving/3.1 Google Colab TensorFlow Serving.html
134 Bytes
13. TensorFlow Lite Prepare a model for a mobile device/2.1 Google Colab TensorFlow Lite.html
134 Bytes
14. Distributed Training with TensorFlow 2.0/2.1 Google Colab Distributed Training.html
134 Bytes
2. TensorFlow 2.0 Basics/1.1 Google Colab TensorFlow 1.x to TensorFlow 2.0.html
134 Bytes
3. Artificial Neural Networks/1.1 Google Colab ANN.html
134 Bytes
4. Convolutional Neural Networks/1.1 Google Colab CNN.html
134 Bytes
5. Recurrent Neural Networks/1.1 Google Colab RNN.html
134 Bytes
6. Transfer Learning and Fine Tuning/2.1 Google Colab Transfer Learning and Fine Tuning.html
134 Bytes
8. Deep Reinforcement Learning for Stock Market trading/1.1 Google Colab Deep-Q Trading Bot.html
134 Bytes
9. Data Validation with TensorFlow Data Validation (TFDV)/1.1 Google Colab TFDV.html
134 Bytes
0. Websites you may like/[FCS Forum].url
133 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
3. Artificial Neural Networks/6. Artificial Neural Network Quiz.html
123 Bytes
4. Convolutional Neural Networks/4. Convolutional Neural Networks Quiz.html
123 Bytes
5. Recurrent Neural Networks/4. Recurrent Neural Network Quiz.html
123 Bytes
6. Transfer Learning and Fine Tuning/16. Transfer Learning quiz.html
123 Bytes
0. Websites you may like/[CourseClub.ME].url
122 Bytes
8. Deep Reinforcement Learning for Stock Market trading/8.1 Yahoo finance - APPLE stocks.html
119 Bytes
==查看完整文档列表==
上一个:
Abella.Danger.Big.Booty.Heavyweight.Takes.An.Outdoor.Anal.Blasting.720p.2021.VHQ.CENTURION.mp4
685.6 MB
下一个:
性感身材美女啪啪自拍,干得太爽了叫“爸爸”,国语淫荡对白
57.3 MB
猜你喜欢
Asian Street Meat COMPLETE COMPLETE COMPLETE COMPLETE
25.2 GB
Asian Street Meat COMPLETE COMPLETE COMPLETE COMPLETE
25.2 GB
The Complete Guide to Built-Ins Complete Plans for...
52.1 MB
Black & Decker The Complete Guide to Sheds, 3rd Edition...
82.9 MB
Everybody Loves Raymond Complete Series 720p - Season 7...
18.3 GB
Black & Decker The Complete Guide Maintain Your Pool &...
114.8 MB
The Complete Guide to a Better Lawn How to Plant,...
140.7 MB
Black Decker The Complete Guide to Built-Ins Complete...
52.1 MB
Everybody Loves Raymond Complete Series 720p - Season 1...
16.1 GB
The Complete Guide to Wiring, Updated 7th Edition...
148.2 MB
种子标签
Complete
FreeCourseSite
Keras
Udemy
API
using
TensorFlow
2.0
com
Guide
种子评价
优质的种子 (0)
假种子 (0)
有密码 (0)
低质量 (0)
有病毒 (0)
无法下载 (0)
欢迎对种子质量进行评价。
最近搜索
15isk
blancanieves
anatomii
suiunov
上車
entame
niepodleg
e585afc2
mp10
momonogi
samoljoty
defis
chamounix
quantica
swandor
zaloty
智勇
174mb
eldesentierro
校妓
xxxx
momentous
iwednesday
jn0
wvzmdupj
b7a7pbqe
说不清楚
demetori
独自一人
frykter
人气女优
更多 »
北川ゆい
Akira
COCOLO
Saiko
あいだもも
あさのくるみ
あまいれもん
いしかわ愛里
いとうしいな
うさみ恭香
うちだまひろ
かぐやひめ
かとりこのみ
かないかほ
くすのき琴美
クミコグレース
くらもとまい(葉月ありさ)
さとみ
中村あみ
しいな純菜
しのざきさとみ(三沢亜也)
牧本千幸(つかもと友希)
眞木ありさ
デヴィ
テラ パトリック
ドミニカ
ともさかまい
ともさか愛
なごみもえ
ひなこ
最新番号
更多 »
MARCH-200
CETD-097
SEND-160
ISO-655
UGUG-028
DSE-814
SICP-101
YOGU-002
WNID-003
NATR-264
HHK-019
KICJ-830
TMSG-018
DDN-165
DANDY-038
ADZ-126
ZACK-008
ASFB-195
DUAL-201
VEC-022
ATP-250
VSPDS-464
MDLD-121
AOSBD-007
EMU-007
EMU-033
SDMS-187
DBEB-024
SDMS-471
GOTHIC-015
同时按Ctrl+D可快速添加本站到收藏夹!您也可以保存到
桌面快捷方式
。
分享BT种子/磁力链接
亲,你知道吗?下载的人越多速度越快,赶快把本页面分享给好友一起下载吧^_^
友情链接
蓝导航
|
找AV导航
|
花小猪导航
|
小X福利导航
|
不良研究所