2048BT
导航切换
首页
热门番号
热门女优
今日热门
一周热门
最新更新
搜索磁力
BT种子名称
Coursera-ML
分享给好友
找到本站最新地址的两种方法: 1、记住地址发布页
2048bt.cc
、
2048bt.cyou
、
bt搜索.xyz
、
bt搜索.cc
2、发送“地址”到2048bt@gmail.com
BT种子基本信息
种子哈希:
e9d6c0d130949e16f3f8d7105241d28b55590a18
文档大小:
1.6 GB
文档个数:
274
个文档
下载次数:
9549
次
下载速度:
极快
收录时间:
2020-01-25
最近下载:
2024-10-08
DMCA/屏蔽:
DMCA/屏蔽
下载磁力链接
magnet:?xt=urn:btih:E9D6C0D130949E16F3F8D7105241D28B55590A18
复制磁力链接到utorrent、Bitcomet、迅雷、115、百度网盘、
PIKPAK
等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
含羞草
51品茶
91视频
逼哩逼哩
欲漫涩
草榴社区
抖阴破解版
成人快手
暗网禁区
缅北禁地
TikTok成人版
暗网解密
文档列表
VIII. Neural Networks Representation (Week 4)/docs_slides_Lecture8.pptx
42.3 MB
XII. Support Vector Machines (Week 7)/12 - 6 - Using An SVM (21 min).mp4
25.1 MB
XII. Support Vector Machines (Week 7)/12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).mp4
22.9 MB
V. Octave Tutorial (Week 2)/5 - 2 - Moving Data Around (16 min).mp4
21.8 MB
XVIII. Application Example Photo OCR/18 - 3 - Getting Lots of Data and Artificial Data (16 min).mp4
19.7 MB
VI. Logistic Regression (Week 3)/6 - 6 - Advanced Optimization (14 min).mp4
19.0 MB
XIV. Dimensionality Reduction (Week 8)/14 - 4 - Principal Component Analysis Algorithm (15 min).mp4
18.7 MB
V. Octave Tutorial (Week 2)/5 - 1 - Basic Operations (14 min).mp4
18.6 MB
XII. Support Vector Machines (Week 7)/12 - 4 - Kernels I (16 min).mp4
18.4 MB
XII. Support Vector Machines (Week 7)/12 - 5 - Kernels II (16 min) (1).mp4
18.3 MB
XII. Support Vector Machines (Week 7)/12 - 5 - Kernels II (16 min).mp4
18.3 MB
IV. Linear Regression with Multiple Variables (Week 2)/4 - 6 - Normal Equation (16 min).mp4
18.0 MB
XVI. Recommender Systems (Week 9)/16 - 2 - Content Based Recommendations (15 min).mp4
17.8 MB
VI. Logistic Regression (Week 3)/6 - 3 - Decision Boundary (15 min).mp4
17.6 MB
I. Introduction (Week 1)/1 - 4 - Unsupervised Learning (14 min).mp4
17.5 MB
XII. Support Vector Machines (Week 7)/12 - 1 - Optimization Objective (15 min).mp4
17.5 MB
XVIII. Application Example Photo OCR/18 - 2 - Sliding Windows (15 min).mp4
17.3 MB
V. Octave Tutorial (Week 2)/5 - 5 - Control Statements for while if statements (13 min).mp4
17.3 MB
XV. Anomaly Detection (Week 9)/15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).mp4
17.1 MB
IX. Neural Networks Learning (Week 5)/9 - 7 - Putting It Together (14 min).mp4
17.1 MB
XVIII. Application Example Photo OCR/18 - 4 - Ceiling Analysis What Part of the Pipeline to Work on Next (14 min).mp4
16.9 MB
V. Octave Tutorial (Week 2)/5 - 6 - Vectorization (14 min).mp4
16.9 MB
XVII. Large Scale Machine Learning (Week 10)/17 - 6 - Map Reduce and Data Parallelism (14 min).mp4
16.8 MB
XI. Machine Learning System Design (Week 6)/11 - 4 - Trading Off Precision and Recall (14 min).mp4
16.8 MB
XV. Anomaly Detection (Week 9)/15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min).mp4
16.7 MB
IX. Neural Networks Learning (Week 5)/9 - 3 - Backpropagation Intuition (13 min).mp4
16.2 MB
XI. Machine Learning System Design (Week 6)/11 - 2 - Error Analysis (13 min).mp4
16.2 MB
XVII. Large Scale Machine Learning (Week 10)/17 - 2 - Stochastic Gradient Descent (13 min).mp4
16.1 MB
V. Octave Tutorial (Week 2)/5 - 3 - Computing on Data (13 min).mp4
16.0 MB
XV. Anomaly Detection (Week 9)/15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).mp4
15.9 MB
III. Linear Algebra Review (Week 1, Optional)/3 - 3 - Matrix Vector Multiplication (14 min).mp4
15.7 MB
XVII. Large Scale Machine Learning (Week 10)/17 - 5 - Online Learning (13 min).mp4
15.6 MB
IX. Neural Networks Learning (Week 5)/9 - 8 - Autonomous Driving (7 min).mp4
15.6 MB
XIV. Dimensionality Reduction (Week 8)/14 - 7 - Advice for Applying PCA (13 min).mp4
15.4 MB
XIV. Dimensionality Reduction (Week 8)/14 - 1 - Motivation I Data Compression (10 min).mp4
15.0 MB
XV. Anomaly Detection (Week 9)/15 - 6 - Choosing What Features to Use (12 min).mp4
14.8 MB
X. Advice for Applying Machine Learning (Week 6)/10 - 3 - Model Selection and Train_Validation_Test Sets (12 min).mp4
14.8 MB
VIII. Neural Networks Representation (Week 4)/8 - 6 - Examples and Intuitions II (10 min).mp4
14.7 MB
XV. Anomaly Detection (Week 9)/15 - 3 - Algorithm (12 min).mp4
14.6 MB
IX. Neural Networks Learning (Week 5)/9 - 2 - Backpropagation Algorithm (12 min).mp4
14.6 MB
XIII. Clustering (Week 8)/13 - 2 - K-Means Algorithm (13 min).mp4
14.5 MB
VIII. Neural Networks Representation (Week 4)/8 - 3 - Model Representation I (12 min).mp4
14.2 MB
II. Linear Regression with One Variable (Week 1)/2 - 5 - Gradient Descent (11 min).mp4
14.2 MB
IX. Neural Networks Learning (Week 5)/9 - 5 - Gradient Checking (12 min).mp4
14.2 MB
I. Introduction (Week 1)/1 - 3 - Supervised Learning (12 min).mp4
14.1 MB
VIII. Neural Networks Representation (Week 4)/8 - 4 - Model Representation II (12 min).mp4
14.1 MB
XVII. Large Scale Machine Learning (Week 10)/17 - 4 - Stochastic Gradient Descent Convergence (12 min).mp4
14.0 MB
V. Octave Tutorial (Week 2)/5 - 4 - Plotting Data (10 min).mp4
14.0 MB
XI. Machine Learning System Design (Week 6)/11 - 3 - Error Metrics for Skewed Classes (12 min).mp4
13.9 MB
VI. Logistic Regression (Week 3)/6 - 4 - Cost Function (11 min).mp4
13.7 MB
II. Linear Regression with One Variable (Week 1)/2 - 6 - Gradient Descent Intuition (12 min).mp4
13.7 MB
X. Advice for Applying Machine Learning (Week 6)/10 - 6 - Learning Curves (12 min).mp4
13.5 MB
XI. Machine Learning System Design (Week 6)/11 - 5 - Data For Machine Learning (11 min).mp4
13.5 MB
III. Linear Algebra Review (Week 1, Optional)/3 - 6 - Inverse and Transpose (11 min).mp4
13.5 MB
X. Advice for Applying Machine Learning (Week 6)/10 - 5 - Regularization and Bias_Variance (11 min).mp4
13.2 MB
III. Linear Algebra Review (Week 1, Optional)/3 - 4 - Matrix Matrix Multiplication (11 min).mp4
13.2 MB
II. Linear Regression with One Variable (Week 1)/2 - 3 - Cost Function - Intuition I (11 min).mp4
12.8 MB
II. Linear Regression with One Variable (Week 1)/2 - 7 - Gradient Descent For Linear Regression (10 min).mp4
12.8 MB
VII. Regularization (Week 3)/7 - 3 - Regularized Linear Regression (11 min).mp4
12.6 MB
VI. Logistic Regression (Week 3)/6 - 5 - Simplified Cost Function and Gradient Descent (10 min).mp4
12.5 MB
I. Introduction (Week 1)/1 - 1 - Welcome (7 min).mp4
12.5 MB
XIV. Dimensionality Reduction (Week 8)/14 - 5 - Choosing the Number of Principal Components (11 min).mp4
12.4 MB
XII. Support Vector Machines (Week 7)/12 - 2 - Large Margin Intuition (11 min).mp4
12.4 MB
XVI. Recommender Systems (Week 9)/16 - 3 - Collaborative Filtering (10 min).mp4
12.3 MB
XV. Anomaly Detection (Week 9)/15 - 2 - Gaussian Distribution (10 min).mp4
12.3 MB
VII. Regularization (Week 3)/7 - 2 - Cost Function (10 min).mp4
12.2 MB
II. Linear Regression with One Variable (Week 1)/2 - 4 - Cost Function - Intuition II (9 min).mp4
11.9 MB
XI. Machine Learning System Design (Week 6)/11 - 1 - Prioritizing What to Work On (10 min).mp4
11.7 MB
VII. Regularization (Week 3)/7 - 1 - The Problem of Overfitting (10 min).mp4
11.7 MB
XIV. Dimensionality Reduction (Week 8)/ex7.zip
11.6 MB
VII. Regularization (Week 3)/7 - 4 - Regularized Logistic Regression (9 min).mp4
11.4 MB
VIII. Neural Networks Representation (Week 4)/8 - 1 - Non-linear Hypotheses (10 min).mp4
11.4 MB
XVI. Recommender Systems (Week 9)/16 - 1 - Problem Formulation (8 min).mp4
11.2 MB
XIV. Dimensionality Reduction (Week 8)/14 - 3 - Principal Component Analysis Problem Formulation (9 min).mp4
11.0 MB
XVI. Recommender Systems (Week 9)/16 - 4 - Collaborative Filtering Algorithm (9 min).mp4
10.8 MB
VIII. Neural Networks Representation (Week 4)/8 - 2 - Neurons and the Brain (8 min).mp4
10.4 MB
III. Linear Algebra Review (Week 1, Optional)/3 - 5 - Matrix Multiplication Properties (9 min).mp4
10.3 MB
XVI. Recommender Systems (Week 9)/16 - 6 - Implementational Detail Mean Normalization (9 min).mp4
10.2 MB
XVI. Recommender Systems (Week 9)/16 - 5 - Vectorization Low Rank Matrix Factorization (8 min).mp4
10.2 MB
III. Linear Algebra Review (Week 1, Optional)/3 - 1 - Matrices and Vectors (9 min).mp4
10.0 MB
IV. Linear Regression with Multiple Variables (Week 2)/4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).mp4
9.9 MB
XIII. Clustering (Week 8)/13 - 5 - Choosing the Number of Clusters (8 min).mp4
9.9 MB
IX. Neural Networks Learning (Week 5)/9 - 4 - Implementation Note Unrolling Parameters (8 min).mp4
9.8 MB
I. Introduction (Week 1)/1 - 2 - What is Machine Learning (7 min).mp4
9.8 MB
XV. Anomaly Detection (Week 9)/15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).mp4
9.7 MB
IV. Linear Regression with Multiple Variables (Week 2)/4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).mp4
9.7 MB
II. Linear Regression with One Variable (Week 1)/2 - 2 - Cost Function (8 min).mp4
9.5 MB
II. Linear Regression with One Variable (Week 1)/2 - 1 - Model Representation (8 min).mp4
9.4 MB
X. Advice for Applying Machine Learning (Week 6)/10 - 4 - Diagnosing Bias vs. Variance (8 min).mp4
9.4 MB
IV. Linear Regression with Multiple Variables (Week 2)/4 - 1 - Multiple Features (8 min).mp4
9.3 MB
VI. Logistic Regression (Week 3)/6 - 1 - Classification (8 min).mp4
9.2 MB
XIII. Clustering (Week 8)/13 - 4 - Random Initialization (8 min).mp4
9.1 MB
X. Advice for Applying Machine Learning (Week 6)/10 - 2 - Evaluating a Hypothesis (8 min).mp4
8.9 MB
XV. Anomaly Detection (Week 9)/15 - 1 - Problem Motivation (8 min).mp4
8.8 MB
VI. Logistic Regression (Week 3)/6 - 2 - Hypothesis Representation (7 min).mp4
8.7 MB
IV. Linear Regression with Multiple Variables (Week 2)/4 - 5 - Features and Polynomial Regression (8 min).mp4
8.7 MB
X. Advice for Applying Machine Learning (Week 6)/10 - 7 - Deciding What to Do Next Revisited (7 min).mp4
8.6 MB
XIII. Clustering (Week 8)/13 - 3 - Optimization Objective (7 min).mp4
8.5 MB
XVIII. Application Example Photo OCR/18 - 1 - Problem Description and Pipeline (7 min).mp4
8.3 MB
VIII. Neural Networks Representation (Week 4)/8 - 5 - Examples and Intuitions I (7 min).mp4
8.3 MB
IX. Neural Networks Learning (Week 5)/9 - 1 - Cost Function (7 min).mp4
8.0 MB
IX. Neural Networks Learning (Week 5)/ex4.zip
7.9 MB
IX. Neural Networks Learning (Week 5)/9 - 6 - Random Initialization (7 min).mp4
7.9 MB
VIII. Neural Networks Representation (Week 4)/ex3.zip
7.9 MB
III. Linear Algebra Review (Week 1, Optional)/3 - 2 - Addition and Scalar Multiplication (7 min).mp4
7.8 MB
XVII. Large Scale Machine Learning (Week 10)/17 - 3 - Mini-Batch Gradient Descent (6 min).mp4
7.7 MB
VI. Logistic Regression (Week 3)/6 - 7 - Multiclass Classification One-vs-all (6 min).mp4
7.3 MB
X. Advice for Applying Machine Learning (Week 6)/10 - 1 - Deciding What to Try Next (6 min).mp4
7.2 MB
XVII. Large Scale Machine Learning (Week 10)/17 - 1 - Learning With Large Datasets (6 min).mp4
6.8 MB
XIV. Dimensionality Reduction (Week 8)/14 - 2 - Motivation II Visualization (6 min).mp4
6.6 MB
IV. Linear Regression with Multiple Variables (Week 2)/4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).mp4
6.5 MB
XVIII. Application Example Photo OCR/docs_slides_Lecture18.pptx
6.4 MB
XIX. Conclusion/19 - 1 - Summary and Thank You (5 min).mp4
6.4 MB
II. Linear Regression with One Variable (Week 1)/2 - 8 - Whats Next (6 min).mp4
6.4 MB
XV. Anomaly Detection (Week 9)/docs_slides_Lecture15.pptx
6.3 MB
IV. Linear Regression with Multiple Variables (Week 2)/4 - 2 - Gradient Descent for Multiple Variables (5 min).mp4
6.1 MB
V. Octave Tutorial (Week 2)/5 - 7 - Working on and Submitting Programming Exercises (4 min).mp4
5.7 MB
XII. Support Vector Machines (Week 7)/docs_slides_Lecture12.pptx
5.6 MB
II. Linear Regression with One Variable (Week 1)/docs_slides_Lecture2.pptx
5.6 MB
XIV. Dimensionality Reduction (Week 8)/14 - 6 - Reconstruction from Compressed Representation (4 min).mp4
5.2 MB
VIII. Neural Networks Representation (Week 4)/docs_slides_Lecture8.pdf
5.2 MB
IX. Neural Networks Learning (Week 5)/docs_slides_Lecture9.pptx
5.2 MB
III. Linear Algebra Review (Week 1, Optional)/docs_slides_Lecture3.pptx
5.2 MB
VIII. Neural Networks Representation (Week 4)/8 - 7 - Multiclass Classification (4 min).mp4
5.1 MB
IV. Linear Regression with Multiple Variables (Week 2)/docs_slides_Lecture4.pptx
4.6 MB
I. Introduction (Week 1)/docs_slides_Lecture1.pptx
4.2 MB
VI. Logistic Regression (Week 3)/docs_slides_Lecture6.pptx
4.0 MB
XIII. Clustering (Week 8)/13 - 1 - Unsupervised Learning Introduction (3 min).mp4
4.0 MB
XVII. Large Scale Machine Learning (Week 10)/docs_slides_Lecture17.pptx
4.0 MB
XIV. Dimensionality Reduction (Week 8)/docs_slides_Lecture14.pptx
3.8 MB
XVI. Recommender Systems (Week 9)/docs_slides_Lecture16.pptx
3.8 MB
IX. Neural Networks Learning (Week 5)/docs_slides_Lecture9.pdf
3.5 MB
X. Advice for Applying Machine Learning (Week 6)/docs_slides_Lecture10.pptx
3.5 MB
XV. Anomaly Detection (Week 9)/docs_slides_Lecture15.pdf
3.5 MB
I. Introduction (Week 1)/docs_slides_Lecture1.pdf
3.5 MB
II. Linear Regression with One Variable (Week 1)/docs_slides_Lecture2.pdf
3.0 MB
XIII. Clustering (Week 8)/docs_slides_Lecture13.pptx
2.9 MB
VII. Regularization (Week 3)/docs_slides_Lecture7.pptx
2.7 MB
VII. Regularization (Week 3)/docs_slides_Lecture7.pdf
2.5 MB
XII. Support Vector Machines (Week 7)/docs_slides_Lecture12.pdf
2.4 MB
XIII. Clustering (Week 8)/docs_slides_Lecture13.pdf
2.3 MB
VI. Logistic Regression (Week 3)/docs_slides_Lecture6.pdf
2.2 MB
XVII. Large Scale Machine Learning (Week 10)/docs_slides_Lecture17.pdf
2.1 MB
XVIII. Application Example Photo OCR/docs_slides_Lecture18.pdf
2.1 MB
XI. Machine Learning System Design (Week 6)/docs_slides_Lecture11.pptx
2.0 MB
III. Linear Algebra Review (Week 1, Optional)/docs_slides_Lecture3.pdf
1.9 MB
IV. Linear Regression with Multiple Variables (Week 2)/docs_slides_Lecture4.pdf
1.8 MB
XIV. Dimensionality Reduction (Week 8)/docs_slides_Lecture14.pdf
1.7 MB
X. Advice for Applying Machine Learning (Week 6)/docs_slides_Lecture10.pdf
1.6 MB
XVI. Recommender Systems (Week 9)/docs_slides_Lecture16.pdf
1.5 MB
XII. Support Vector Machines (Week 7)/ex6.zip
917.9 kB
XVI. Recommender Systems (Week 9)/ex8.zip
813.9 kB
XI. Machine Learning System Design (Week 6)/docs_slides_Lecture11.pdf
509.6 kB
IV. Linear Regression with Multiple Variables (Week 2)/ex1.zip
481.1 kB
V. Octave Tutorial (Week 2)/docs_slides_Lecture5.pptx
417.1 kB
VII. Regularization (Week 3)/ex2.zip
248.8 kB
V. Octave Tutorial (Week 2)/docs_slides_Lecture5.pdf
248.2 kB
X. Advice for Applying Machine Learning (Week 6)/ex5.zip
181.3 kB
avatar.png
56.8 kB
XII. Support Vector Machines (Week 7)/12 - 6 - Using An SVM (21 min).srt
44.5 kB
XII. Support Vector Machines (Week 7)/12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).srt
36.7 kB
XVIII. Application Example Photo OCR/18 - 3 - Getting Lots of Data and Artificial Data (16 min).srt
36.0 kB
XVIII. Application Example Photo OCR/18 - 2 - Sliding Windows (15 min).srt
32.2 kB
IV. Linear Regression with Multiple Variables (Week 2)/4 - 6 - Normal Equation (16 min).srt
31.9 kB
XII. Support Vector Machines (Week 7)/12 - 5 - Kernels II (16 min) (1).srt
31.4 kB
XII. Support Vector Machines (Week 7)/12 - 5 - Kernels II (16 min).srt
31.4 kB
XVIII. Application Example Photo OCR/18 - 4 - Ceiling Analysis- What Part of the Pipeline to Work on Next (14 min).srt
31.2 kB
XII. Support Vector Machines (Week 7)/12 - 1 - Optimization Objective (15 min).srt
30.1 kB
XII. Support Vector Machines (Week 7)/12 - 4 - Kernels I (16 min).srt
29.8 kB
I. Introduction (Week 1)/1 - 4 - Unsupervised Learning (14 min).srt
29.8 kB
XVII. Large Scale Machine Learning (Week 10)/17 - 6 - Map Reduce and Data Parallelism (14 min).srt
29.6 kB
V. Octave Tutorial (Week 2)/5 - 2 - Moving Data Around (16 min).srt
29.3 kB
XI. Machine Learning System Design (Week 6)/11 - 4 - Trading Off Precision and Recall (14 min).srt
29.3 kB
XIV. Dimensionality Reduction (Week 8)/14 - 4 - Principal Component Analysis Algorithm (15 min).srt
29.3 kB
XVI. Recommender Systems (Week 9)/16 - 2 - Content Based Recommendations (15 min).srt
29.3 kB
VI. Logistic Regression (Week 3)/6 - 6 - Advanced Optimization (14 min).srt
28.5 kB
IX. Neural Networks Learning (Week 5)/9 - 7 - Putting It Together (14 min).srt
28.3 kB
XVII. Large Scale Machine Learning (Week 10)/17 - 5 - Online Learning (13 min).srt
28.3 kB
XI. Machine Learning System Design (Week 6)/11 - 2 - Error Analysis (13 min).srt
28.1 kB
XV. Anomaly Detection (Week 9)/15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min).srt
28.1 kB
XV. Anomaly Detection (Week 9)/15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).srt
27.9 kB
VI. Logistic Regression (Week 3)/6 - 3 - Decision Boundary (15 min).srt
27.4 kB
XIV. Dimensionality Reduction (Week 8)/14 - 7 - Advice for Applying PCA (13 min).srt
27.0 kB
XV. Anomaly Detection (Week 9)/15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).srt
26.9 kB
XIII. Clustering (Week 8)/13 - 2 - K-Means Algorithm (13 min).srt
26.9 kB
V. Octave Tutorial (Week 2)/5 - 1 - Basic Operations (14 min).srt
26.0 kB
V. Octave Tutorial (Week 2)/5 - 6 - Vectorization (14 min).srt
25.8 kB
XV. Anomaly Detection (Week 9)/15 - 6 - Choosing What Features to Use (12 min).srt
25.7 kB
IX. Neural Networks Learning (Week 5)/9 - 3 - Backpropagation Intuition (13 min).srt
25.6 kB
V. Octave Tutorial (Week 2)/5 - 3 - Computing on Data (13 min).srt
25.5 kB
X. Advice for Applying Machine Learning (Week 6)/10 - 6 - Learning Curves (12 min).srt
25.3 kB
X. Advice for Applying Machine Learning (Week 6)/10 - 3 - Model Selection and Train_Validation_Test Sets (12 min).srt
25.2 kB
III. Linear Algebra Review (Week 1, Optional)/3 - 3 - Matrix Vector Multiplication (14 min).srt
24.8 kB
IX. Neural Networks Learning (Week 5)/9 - 5 - Gradient Checking (12 min).srt
24.1 kB
XV. Anomaly Detection (Week 9)/15 - 3 - Algorithm (12 min).srt
24.1 kB
V. Octave Tutorial (Week 2)/5 - 5 - Control Statements- for, while, if statements (13 min).srt
23.9 kB
XI. Machine Learning System Design (Week 6)/11 - 5 - Data For Machine Learning (11 min).srt
23.7 kB
IX. Neural Networks Learning (Week 5)/9 - 2 - Backpropagation Algorithm (12 min).srt
23.4 kB
X. Advice for Applying Machine Learning (Week 6)/10 - 5 - Regularization and Bias_Variance (11 min).srt
23.1 kB
VIII. Neural Networks Representation (Week 4)/8 - 4 - Model Representation II (12 min).srt
23.0 kB
VI. Logistic Regression (Week 3)/6 - 4 - Cost Function (11 min).srt
22.7 kB
XI. Machine Learning System Design (Week 6)/11 - 3 - Error Metrics for Skewed Classes (12 min).srt
22.6 kB
VIII. Neural Networks Representation (Week 4)/8 - 3 - Model Representation I (12 min).srt
22.1 kB
XII. Support Vector Machines (Week 7)/12 - 2 - Large Margin Intuition (11 min).srt
21.8 kB
XIV. Dimensionality Reduction (Week 8)/14 - 5 - Choosing the Number of Principal Components (11 min).srt
21.7 kB
III. Linear Algebra Review (Week 1, Optional)/3 - 6 - Inverse and Transpose (11 min).srt
21.6 kB
XV. Anomaly Detection (Week 9)/15 - 2 - Gaussian Distribution (10 min).srt
21.1 kB
III. Linear Algebra Review (Week 1, Optional)/3 - 4 - Matrix Matrix Multiplication (11 min).srt
21.1 kB
VII. Regularization (Week 3)/7 - 3 - Regularized Linear Regression (11 min).srt
20.9 kB
XVI. Recommender Systems (Week 9)/16 - 3 - Collaborative Filtering (10 min).srt
20.7 kB
XIV. Dimensionality Reduction (Week 8)/14 - 1 - Motivation I- Data Compression (10 min).srt
20.6 kB
VII. Regularization (Week 3)/7 - 2 - Cost Function (10 min).srt
20.2 kB
XI. Machine Learning System Design (Week 6)/11 - 1 - Prioritizing What to Work On (10 min).srt
20.1 kB
VI. Logistic Regression (Week 3)/6 - 5 - Simplified Cost Function and Gradient Descent (10 min).srt
20.0 kB
VII. Regularization (Week 3)/7 - 1 - The Problem of Overfitting (10 min).srt
19.7 kB
VIII. Neural Networks Representation (Week 4)/8 - 1 - Non-linear Hypotheses (10 min).srt
19.5 kB
II. Linear Regression with One Variable (Week 1)/2 - 7 - Gradient Descent For Linear Regression (10 min).srt
19.2 kB
IV. Linear Regression with Multiple Variables (Week 2)/4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).srt
18.9 kB
XIV. Dimensionality Reduction (Week 8)/14 - 3 - Principal Component Analysis Problem Formulation (9 min).srt
18.9 kB
XVII. Large Scale Machine Learning (Week 10)/17 - 2 - Stochastic Gradient Descent (13 min).srt
18.6 kB
XIII. Clustering (Week 8)/13 - 5 - Choosing the Number of Clusters (8 min).srt
18.4 kB
V. Octave Tutorial (Week 2)/5 - 4 - Plotting Data (10 min).srt
17.8 kB
VII. Regularization (Week 3)/7 - 4 - Regularized Logistic Regression (9 min).srt
17.6 kB
VIII. Neural Networks Representation (Week 4)/8 - 6 - Examples and Intuitions II (10 min).srt
17.5 kB
IV. Linear Regression with Multiple Variables (Week 2)/4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).srt
17.4 kB
I. Introduction (Week 1)/1 - 3 - Supervised Learning (12 min).srt
17.2 kB
XVI. Recommender Systems (Week 9)/16 - 1 - Problem Formulation (8 min).srt
17.2 kB
III. Linear Algebra Review (Week 1, Optional)/3 - 5 - Matrix Multiplication Properties (9 min).srt
17.2 kB
XVI. Recommender Systems (Week 9)/16 - 6 - Implementational Detail- Mean Normalization (9 min).srt
17.0 kB
XVI. Recommender Systems (Week 9)/16 - 4 - Collaborative Filtering Algorithm (9 min).srt
16.9 kB
XV. Anomaly Detection (Week 9)/15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).srt
16.8 kB
VIII. Neural Networks Representation (Week 4)/8 - 2 - Neurons and the Brain (8 min).srt
16.8 kB
XVI. Recommender Systems (Week 9)/16 - 5 - Vectorization- Low Rank Matrix Factorization (8 min).srt
16.7 kB
XIII. Clustering (Week 8)/13 - 4 - Random Initialization (8 min).srt
16.6 kB
VI. Logistic Regression (Week 3)/6 - 1 - Classification (8 min).srt
16.6 kB
XVII. Large Scale Machine Learning (Week 10)/17 - 4 - Stochastic Gradient Descent Convergence (12 min).srt
16.6 kB
X. Advice for Applying Machine Learning (Week 6)/10 - 4 - Diagnosing Bias vs. Variance (8 min).srt
16.5 kB
XV. Anomaly Detection (Week 9)/15 - 1 - Problem Motivation (8 min).srt
16.4 kB
IV. Linear Regression with Multiple Variables (Week 2)/4 - 5 - Features and Polynomial Regression (8 min).srt
16.3 kB
III. Linear Algebra Review (Week 1, Optional)/3 - 1 - Matrices and Vectors (9 min).srt
16.3 kB
II. Linear Regression with One Variable (Week 1)/2 - 6 - Gradient Descent Intuition (12 min).srt
15.9 kB
II. Linear Regression with One Variable (Week 1)/2 - 5 - Gradient Descent (11 min).srt
15.8 kB
IX. Neural Networks Learning (Week 5)/9 - 4 - Implementation Note- Unrolling Parameters (8 min).srt
15.3 kB
XVIII. Application Example Photo OCR/18 - 1 - Problem Description and Pipeline (7 min).srt
15.1 kB
IV. Linear Regression with Multiple Variables (Week 2)/4 - 1 - Multiple Features (8 min).srt
14.9 kB
VI. Logistic Regression (Week 3)/6 - 2 - Hypothesis Representation (7 min).srt
14.5 kB
X. Advice for Applying Machine Learning (Week 6)/10 - 7 - Deciding What to Do Next Revisited (7 min).srt
14.4 kB
IX. Neural Networks Learning (Week 5)/9 - 6 - Random Initialization (7 min).srt
14.3 kB
XIII. Clustering (Week 8)/13 - 3 - Optimization Objective (7 min).srt
14.0 kB
IX. Neural Networks Learning (Week 5)/9 - 1 - Cost Function (7 min).srt
13.5 kB
VIII. Neural Networks Representation (Week 4)/8 - 5 - Examples and Intuitions I (7 min).srt
13.4 kB
VI. Logistic Regression (Week 3)/6 - 7 - Multiclass Classification- One-vs-all (6 min).srt
12.9 kB
X. Advice for Applying Machine Learning (Week 6)/10 - 1 - Deciding What to Try Next (6 min).srt
12.7 kB
II. Linear Regression with One Variable (Week 1)/2 - 3 - Cost Function - Intuition I (11 min).srt
12.4 kB
III. Linear Algebra Review (Week 1, Optional)/3 - 2 - Addition and Scalar Multiplication (7 min).srt
12.3 kB
X. Advice for Applying Machine Learning (Week 6)/10 - 2 - Evaluating a Hypothesis (8 min).srt
11.8 kB
II. Linear Regression with One Variable (Week 1)/2 - 4 - Cost Function - Intuition II (9 min).srt
11.4 kB
XIV. Dimensionality Reduction (Week 8)/14 - 2 - Motivation II- Visualization (6 min).srt
10.4 kB
I. Introduction (Week 1)/1 - 2 - What is Machine Learning- (7 min).srt
10.4 kB
II. Linear Regression with One Variable (Week 1)/2 - 1 - Model Representation (8 min).srt
10.2 kB
I. Introduction (Week 1)/1 - 1 - Welcome (7 min).srt
10.1 kB
II. Linear Regression with One Variable (Week 1)/2 - 2 - Cost Function (8 min).srt
10.1 kB
IX. Neural Networks Learning (Week 5)/9 - 8 - Autonomous Driving (7 min).srt
10.0 kB
IV. Linear Regression with Multiple Variables (Week 2)/4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).srt
10.0 kB
II. Linear Regression with One Variable (Week 1)/2 - 8 - What's Next (6 min).srt
8.7 kB
XIX. Conclusion/19 - 1 - Summary and Thank You (5 min).srt
8.3 kB
XVII. Large Scale Machine Learning (Week 10)/17 - 1 - Learning With Large Datasets (6 min).srt
8.1 kB
XVII. Large Scale Machine Learning (Week 10)/17 - 3 - Mini-Batch Gradient Descent (6 min).srt
8.0 kB
XIV. Dimensionality Reduction (Week 8)/14 - 6 - Reconstruction from Compressed Representation (4 min).srt
7.7 kB
VIII. Neural Networks Representation (Week 4)/8 - 7 - Multiclass Classification (4 min).srt
7.6 kB
III. Linear Algebra Review (Week 1, Optional)/3 - 1 - Matrices and Vectors (9 min).txt
7.2 kB
XIII. Clustering (Week 8)/13 - 1 - Unsupervised Learning- Introduction (3 min).srt
7.2 kB
IV. Linear Regression with Multiple Variables (Week 2)/4 - 2 - Gradient Descent for Multiple Variables (5 min).srt
6.8 kB
V. Octave Tutorial (Week 2)/5 - 7 - Working on and Submitting Programming Exercises (4 min).srt
4.5 kB
==查看完整文档列表==
上一个:
The.Office.US.S09E04.HDTV.x264-LOL.[VTV].mp4
180.0 MB
下一个:
AJR - 2018 - The Click (Deluxe Edition) (FLAC)
473.0 MB
猜你喜欢
360水滴偷拍泄密150G(www.223dn.ml)我本初高中系列,我本初艺校系列第一季80G,第二季104G,...
482.6 MB
会员免费观看我本初艺校第一季80G,104G,200G合集,T先生原创视频(www.uuai.ml)小咖秀2900...
341.2 MB
指挥小学生系列打包128g指挥小学生资源128g指挥小学生系列90G指挥小学生全集小学生指挥下载独家原创指挥小学生...
5.6 GB
会员免费观看我本初艺校第一季80G,104G,200G合集,T先生原创视频(www.uuai.ml)小咖秀2900...
341.2 MB
最全版本免费观看福利资源,我本初高中系列,我本初艺校系列第一季80G,第二季104G,200G合集,T先生原创视频...
341.2 MB
【最新福利网址www.2852.ml】www.2852.ml爱幼论坛 幼交 12岁泰国萝莉幼女视频
482.6 MB
指挥小学生系列打包128g指挥小学生资源128g指挥小学生系列90G指挥小学生全集小学生指挥下载独家原创指挥小学生...
1.9 GB
[精品]最新:91T先生宾馆开房和穿着校服逃课出来的干女儿啪啪逼逼非常粉嫩[必看]指挥小学生系列全集下载独家原创指...
313.2 MB
指挥小学生系列打包128g指挥小学生资源128g指挥小学生系列90G指挥小学生全集小学生指挥下载独家原创指挥小学生...
5.6 GB
指挥小学生资源128g指挥小学生系列90G指挥小学生全集小学生指挥下载独家原创指挥小学生指挥小学生部迅雷磁力指挥小...
313.2 MB
种子标签
ML
Coursera
种子评价
优质的种子 (0)
假种子 (0)
有密码 (0)
低质量 (0)
有病毒 (0)
无法下载 (0)
欢迎对种子质量进行评价。
最近搜索
商務宴
嬰兒
司机
組合
掰断
listless
mineiros
giganti
okasare
020519
carnal
fut3re
florez
total
tarik
edit
0603
krbv
1987
intensidad
kancolle
euphonia
v254
nwf
rosary
trunu
無毛蘿莉娘
场景
gekijoban
comando
人气女优
更多 »
北川ゆい
Akira
COCOLO
Saiko
あいだもも
あさのくるみ
あまいれもん
いしかわ愛里
いとうしいな
うさみ恭香
うちだまひろ
かぐやひめ
かとりこのみ
かないかほ
くすのき琴美
クミコグレース
くらもとまい(葉月ありさ)
さとみ
中村あみ
しいな純菜
しのざきさとみ(三沢亜也)
牧本千幸(つかもと友希)
眞木ありさ
デヴィ
テラ パトリック
ドミニカ
ともさかまい
ともさか愛
なごみもえ
ひなこ
最新番号
更多 »
MARCH-200
CETD-097
SEND-160
ISO-655
UGUG-028
DSE-814
SICP-101
YOGU-002
WNID-003
NATR-264
HHK-019
KICJ-830
TMSG-018
DDN-165
DANDY-038
ADZ-126
ZACK-008
ASFB-195
DUAL-201
VEC-022
ATP-250
VSPDS-464
MDLD-121
AOSBD-007
EMU-007
EMU-033
SDMS-187
DBEB-024
SDMS-471
GOTHIC-015
同时按Ctrl+D可快速添加本站到收藏夹!您也可以保存到
桌面快捷方式
。
分享BT种子/磁力链接
亲,你知道吗?下载的人越多速度越快,赶快把本页面分享给好友一起下载吧^_^
友情链接
蓝导航
|
找AV导航
|
花小猪导航
|
小X福利导航
|
不良研究所